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Let f be a real polynomial having no zeros in the open unit disk. We prove a
sharp evaluation from above for the quantity & f $&� �& f &p , 0�p<�. The extremal
polynomials and the exact constants are given. This extends an inequality of Paul
Erdo� s [7]. � 2000 Academic Press
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1. INTRODUCTION AND STATEMENT OF THE PROBLEM

For any continuous function f : [&1, 1] � C and p # (0, �) let

& f &p :=\ 1
2 |

1

&1
| f (x)| p dx+

1�p

;

besides, let

& f &� := max
&1�x�1

| f (x)|.

It is known that & f &p tends to the limit

exp \ 1
2 |

1

&1
log | f (x)| dx+

when p � 0. This is exactly the value given to the functional & f &p when
p=0.

Let f be a real polynomial. If f has no zeros in the open unit disk then
& f $&� can be best possible estimated from above by & f &p , 0�p��. To
the best of our knowledge the first result of this type for polynomials with
restricted zeros was obtained by Erdo� s [7] in the case p=�.
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Theorem A. Let f be a real polynomial of degree at most n such that
& f &�=1. If the zeros of f are all real and lie on R"(&1, 1) then

& f $&��_1
2 \1&

1
n+

&n+1

& n.

Equality is possible only at &1, +1 and it holds only for

fex., 1(x) :=
nn

2n(n&1)n&1 (1+x)(1&x)n&1

and

fex., 2(x) :=
nn

2n(n&1)n&1 (1+x)n&1 (1&x).

It can be seen that the exact asymptotic of & f $&� �& f &� with respect to
the polynomial degree is n. This is smaller than n2, which is the exact
asymptotic in the corresponding inequality for polynomials without
restrictions on the zeros, see [8].

Without any restriction we can assume that each polynomial, belonging
to the class introduced in Theorem A, is positive on (&1, 1). By using a
wider class of polynomials (see Remark 8)

?n :={ f : f (x)= :
n

k=0

Ak(1+x)k (1&x)n&k, Ak�0, k=0, 1, ..., n=
introduced by Bernstein (see [3, 4]) an extension of Theorem A is due to
Sheick [12].

Theorem B. If f # ?n , then

& f $&��
e
2

n& f &� .

On the basis of a sharp point-wise bound for | f $(x)|�& f &� at an
arbitrarily prescribed point x on the unit interval the next theorem is given
in [1].

Theorem C. If f is a real polynomial of degree at most n such that
& f &�=1 and f (z){0, |z|<1, then

& f $&��_1
2 \1&

1
n+

&n+1

& n

with a case of equality only for fex., 1 and fex., 2 .
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Another contribution to this subject can be seen in [2], where the
following theorem has been proved.

Theorem D. If f is a real polynomial of degree at most n having at most
k zeros in the open unit disk, then there exists an absolute constant c, such
that

& f $&��cn(k+1) & f &� .

Note, that the estimate is sharp up to the best possible constant. A short
proof of the above theorem based on D. Newman inequality [10] for
Mu� nz polynomials and Meissner's representation (see Remark 8 of this
paper) can be seen in [6]. The best constants case is known only in the
cases k=0, [1, 7, 12] and k=n, [8].

Let qn, k(x)=(1+x)k (1&x)n&k and qn, k, *
(x)=(nnqn, k(x))�(2nkk

(n&k)n&k). Note that &qn, k, *
&�=1. The next Erdo� s�Nikolskii type

inequality between different metrics is proved in [5].

Theorem E. Let f be a polynomial of degree at most n with real coef-
ficients and having no zeros in the open unit disk. Suppose, in addition, that
f has zeros of multiplicity at least + at &1 and 1, where 0�+�[n�2]. If f
is not a constant multiple by qn, + or qn, n&+ , then

& f &p>&qn, +, *
&p & f &� , 0�p<�.

As a corollary of Theorem C and Theorem E the best possible estimate
of & f $&� �& f &p from above is given in [5] but under the additional boundary
assumption

f (&1)= f (1)=0 .

Corollary A. Let f be a real polynomial of degree at most n, such that
f (&1)= f (1)=0 and f (z){0 for |z|<1. If f is not a constant multiple by
qn, 1 or qn, n&1 then

& f $&�<
&q$n, 1 &�

&qn, 1&p
& f &p , 0�p<�.

Now a natural question arises, stated by Professor Q. I. Rahman in a
joint discussion with the first named author: If it is possible that the
boundary conditions f (&1)= f (1)=0 can be removed from the statement
of Corollary A. It is logical to believe, following [7], that these boundary
conditions are superfluous in the statement of Corollary A at least for
p>1.
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We will answer the above mentioned question by giving the exact solu-
tion of the extremal problem, given in Corollary A, without the boundary
condition f (&1)= f (1)=0. Our method is based on a technical refinement
of a variational approach, given in [5].

Let Pn denote the class of all real polynomials of degree at most n having
no zeros in the open unit disk, i.e. f (z){0, |z|<1. Then our extremal
problem reads as follows. Find

sup
f # Pn

& f $&�

& f &p
, 0�p<�. (1)

Remark 1. Without any restriction in the process of our considerations
we can assume that Pn consists of polynomials which are positive on
(&1, 1).

Remark 2. We will show that the boundary conditions f (&1)= f (1)
=0 in Corollary A are superfluous when p>1 (see Theorem 1). This
means that the extremal polynomials of (1) has to satisfy f (&1)= f (1)=0
in the case p>1. If 0�p<1 and we do not put the boundary condition
f (&1)= f (1)=0, (see Theorem 1) then the extremal polynomials of (1)
will differ from the extremal polynomials of the corresponding to (1)
problem with the boundary conditions f (&1)= f (1)=0 (this case is
settled in Corollary A).

Remark 3. In the process of solving the problem (1) we will see that in
the case 0�p�1 new effects appears. Namely, the extremal polynomials of
problem (1) do not satisfy the boundary condition f (&1)= f (1)=0, when
0�p<1. In the case p=1 we will see that the problem (1) has two classes
of extremal polynomials. One of them satisfies f (&1)= f (1)=0 whereas
the other does not. In the case p>1 the extremal polynomials of (1) must
satisfy the condition f (&1)= f (1)=0 and this means that the condition
f (1)= f (&1)=0 is superfluous in the statement of Corollary A for p>1.

Problem. For a fixed p, 0�p<�, find the exact value and the
extremal polynomials of (1).

2. AUXILIARY RESULTS

The solution of the problem (1) is based on a technical refinement of a
variational approach that is described in [5] and will be presented as a
sequence of lemmas.
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Lemma 1. The problem (1) possesses an extremal polynomial. In other
words

sup
f # Pn

& f $&�

& f &p
=max

f # Pn

& f $&�

& f &p

Proof. From Theorem A and Theorem C we have

& f $&��
1
2 \1&

1
n+

&n+1

n & f &��C(n, p) & f &p ,

so

sup
f # Pn

& f $&�

& f &p
�C(n, p)<+�.

Let fk be a sequence of polynomials from Pn such that

& f $k&�

& fk &p
� sup

f # Pn

& f $&�

& f &p
&

1
k

.

Consider polynomials gk :=fk �& fk&p . It is evident that &gk&p=1 for
k=1, 2, ... .

From the above-mentioned papers it follows that &gk&��C(n, p) for
k=1, 2, ... . We choose from the sequence [gk]�

k=1 a locally uniformly
convergent subsequence and denote it by [gk]�

k=1 .
The locally uniform limit g of [gk]�

k=1 must be a polynomial of degree
at most n. By Lebesgue's dominated convergence theorem it follows that
&g&p=1 and from here the limit function g is not identically zero.
Hurwitz's theorem shows that g # Pn . In particular g(x){0 on &1<x<1.

The degree of our polynomials gk(x) for k=1, 2, ... is fixed and the
locally uniform convergence is an invariant property with respect to
differentiation. This means that g$k � g$ locally uniformly, when k � �.

From the above considerations it is easily seen that

lim
k � �

&gk&p=&g&p , lim
k � �

&g$k&�=&g$&� .

Hence we have

sup
f # Pn

& f $&�

& f &p
�

&g$&�

&g&p
=&g$&�= lim

k � �

&g$k&�

&gk&p
= lim

k � �

& f $k&�

& fk&p
� sup

f # Pn

& f $&�

& f &p
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which gives

&g$&�

&g&p
= sup

f # Pn

& f $&�

& f &p
.

The proof is completed. The conclusion is that an extremal polynomial
exists.

Let us denote by \n the subclass of Pn consisting of polynomials having
only real zeros, i.e.

\n=[ f: f # Pn , f has only real zeros]

The next lemma indicates that while looking for extremal polynomials of
(1) we only need to examine those polynomials of Pn whose all zeros are
real.

Lemma 2. We have

sup
f # Pn

& f $&�

& f &p
=sup

f # \n

& f $&�

& f &p
.

Proof. If deg( f )�1 the statement of the lemma is trivial. Let
deg( f )�2 and let f have at least one non-real zero. Without any restriction
we may assume that f is positive on (&1, 1). Since f is real, f has a pair
of conjugate zeros, so f (z)= g(z)(z&a&ib)(z&a+ib), b # R, b{0.

Let ! # [&1, 1] be such that

& f $&�=| f $(!)|.

Consider an auxiliary polynomial

f=(z)= f (z)&=g(z)(z&!)2, = sufficiently small and positive.

Note that f $=(!)= f $(!) and from here

& f $=&��| f $=(!)|=| f $(!)|=& f $&� .

Now f=(z) can be represented as follows

f=(z)= g(z)((1&=) z2+2(!=&a) z+a2+b2&=!2)

and the quadratic

(1&=) z2+2(!=&a) z+a2+b2&=!2
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must have a pair of conjugate zeros for = sufficiently small (=>0) because
b{0. So

f=(z)=(1&=) g(z)(z&z1, =)(z&z� 1, =).

We have

|z1, = | 2=z1, = z� 1, ==
a2+b2&=!2

1&=
�1.

and z1, = , z� 1, = do not belong to the open unit disk. On the other hand
maxx # [&1, 1] | f (x)|= f (x*)>0 and for =>0 and sufficiently small
f=(x*)>0. Hence f=(x)>0 for &1<x<1. The conclusion is that f=(z) # Pn .

By assumption f>0 on (&1, 1) and from here g>0 on (&1, 1). It
follows that

0< f=(x)< f (x), x # (&1, 1)"[!]

and

& f=&p<& f &p .

Thus

& f $&�

& f &p
<

& f $=&�

& f=&p

and this ends the proof of the lemma.

Remark 4. Note that if b=0 the above considerations do not work and
we may have a pair of real zeros and at least one of them can be in the
open unit disk.

If deg( f )=0 then supf # P0
& f $&��& f &p=0 so the problem is trivial and

each non-zero constant polynomial is a solution of our problem. If
deg( f )=1 then it is evident that the only extremal polynomials are
c(x+1) and c(1&x), c # R, c{0.

In what follows we assume n�2.

Lemma 3. If f # \n and f (&1) f (1){0 then f cannot be extremal.

Proof. Without any restriction let f>0 on (&1, 1), f # \n and let

min
x # [&1, 1]

f (x)=min[ f (&1), f (1)]>0.

Consider the polynomial f=(z) :=f (z)&=, for = sufficiently small (=>0).
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Let C1 =[z : z # C, |z|�1] be the unit disk in the complex plane and
x1 , x2 , ..., xn be the zeros of f.

Since min1�i�n |x i |>1, then min[i=1, 2, ..., and z # C1] |x i&z|>0 and from
this and from Hurwitz's theorem we have f=(z) # Pn for =>0 and sufficiently
small. Note that f=(z) may have complex zeros. If =�min[ f (&1), f (1)]
then

0< f=(x)< f (x), &1<x<1

and

f $=(x)= f $(x).

It is easily checked that

& f $&�

& f &p
<

& f $=&�

& f=&p
, f= # Pn

and this completes the proof.

Lemma 4. If f (x) # \n and f possesses at least two zeros in R"[&1, 1]
counting their multiplicities then f (x) cannot be an extremal polynomial
of (1).

Proof. Let ! be a point of [&1, 1] where | f $(x)| attains the maximum
value(& f $&�=| f $(!)| ). First we observe that f cannot have zeros in
(&�, &1) and (1, �) at the same time. Suppose it does. Let *& be the
smallest zero of f and *+ be the largest one. It is easily seen that for all
small =>0 the polynomial

f=(z) :=f (z)+
=f (z)

(z&*&)(z&*+)
(z&!)2

belongs to \n and 0< f=(x)< f (x) for all x # (&1, 1)"[!]. On the other
hand

& f $=&��| f $=(!)|=| f $(!)|=& f $&�

and we see that

& f $&�

& f &p
<

& f $=&�

& f=&p
.

Assume that f has no zeros in (&�, &1). We claim that f cannot have
two or more zeros in (1, �) counting their multiplicities. Suppose it does.
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Let *1 be the largest zero of f and *2 the largest but one. If *1 is double
zero then *1=*2 .

It is geometrically evident that for all small =>0, the polynomial

f=(z) :=f (z)&
=f (z)

(z&*1)(z&*2)
(z&!)2

belongs to \n and 0< f=(x)< f (x) for all x # (&1, 1)"[!].
From here we clearly have

& f $&�

& f &p
<

& f $=&�

& f=&p
.

The proof is completed.

We have proved that if f is extremal for the problem (1) it must be of
the following form

f (x)=c(1+tx)(1&x) j (1+x)k,

where |t|�1, k+ j�n&1, c # R, c{0.

By using an analogous variational construction one may show that
j+k=n&1 if f is extremal. The point ! is chosen by analogy such that

& f $&�=| f $(!)|.

The above considerations can be summarized in the following lemma.

Lemma 5. If f is an extremal polynomial of the problem (1) then f must
be of the form

f (x)=c(1+tx)(1&x)n&k&1 (1+x)k,

where &1�t�1, 0�k�n&1, c # R, c{0.

Remark 5. Lemma 3 is a corollary of Lemma 5, note that n�2.
Lemma 5 shows that while searching for an extremal polynomials of the
problem (1) we need only examine those from the class

en :=[ f : f (x)=c(1+x)k (1&x)n&k&1 (1+tx);

0�k�n&1, &1�t�1, c>0].

Note that without any restriction we can suppose that f (x)>0 on (&1, 1).
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Let

en, 1 :=[ f : f # en ; f (1)=0, f (&1)>0]

en, &1 :=[ f : f # en ; f (&1)=0, f (1)>0]

en, &1, 1 :=[ f : f # en ; f (1)= f (&1)=0].

We have

max
f # Pn

& f $&�

& f &p
=max \ max

f # en, &1

& f $&�

& f &p
, max

f # en, 1

& f $&�

& f &p
, max

f # en, &1, 1

& f $&�

& f &p + . (2)

The above formula shows that we can divide our problem into 3 problems.
The first one,

max
f # en, &1, 1

& f $&�

& f &p
, (3)

is the problem which is given by Corollary A, (see [5, Corollary 2]). The
extremal polynomials in this case have the form

c(1&x)(1+x)n&1, and c(1+x)(1&x)n&1, c>0.

It is obvious that if f (x) is extremal for the problem

max
f # en, &1

& f $&�

& f &p

then f (&x) is extremal for

max
f # en, 1

& f $&�

& f &p
.

and vice versa.
We make the conclusion that to find the extremals of problem (1) we

need only study the problem

max
f # en, 1

& f $&�

& f &p
. (4)

The class en, 1 consists of all polynomials of the form

en, 1 :=[ f : f (x)=c(1+tx)(1&x)n&1, c>0, &1�t<1].
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Lemma 6. If t # (&1, (n&2)�n] then the polynomial f (x)=c(1+tx)
(1&x)n&1, c>0 cannot be extremal for the problem (1).

Proof. For clarity we divide the proof into four cases with respect to
the parameter t.

(a) Let first t # (&1, 0). By using the polynomial

p&1(x) :=
(1&x)n&1

2n [(n&1) x+n+1]

p&1(&1)=1, p$&1(&1)=0 and p&1(x)�0 for &1�x�1 we construct a
variational polynomial

f=(x) :=f (x)&=p&1(x).

It is geometrically evident that f=(x) must have one real zero greater than
1 and smaller than &1�t for a sufficiently small =>0.

So f=(x) # en, 1 for a sufficiently small =>0 and 0< f=(x)< f (x) for
&1�x<1.

On the other hand & f $&�=| f $(&1)| and & f $=&��| f $=(&1)|=
| f $(&1)|=& f $&� .

It follows that

& f $=&�

& f=&p
>

& f $&�

& f &p

and from here the polynomial f (x)=c(1+tx)(1&x)n&1 cannot be
extremal for t # (&1, 0).

(b) Let now t=0, so f (x)=c(1&x)n&1. Consider again

f=(x) :=c(1&x)n&1&=p&1(x)=(&1)n =(n&1)
2n xn+ :

n&1

k=0

ck xk. (5)

Without any restriction let us assume n odd. The case n even can be treated
by analogy. For a fixed x0>1 we can choose = sufficiently small (=>0)
such that f=(x0)>0. From here and the representation (5) it follows f=(x)
has a real zero greater than 1 because limx [ +� f=(x)=&�. So f= # en, 1

and 0< f=(x)< f (x), &1�x<1. We end this case by the same arguments
as in the case (a).

The cases (a) and (b) complete the proof of Lemma 6 when n=2. Let
n�3.

(c) Let n�3 and let t # (0, (n&2)�(n+2)]. Consider f (x)=c(1+tx)
(1&x)n&1, c>0.
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The polynomial f $(x) has one local extremum at x*(t)=(2t&n+2)�nt.
For t # (0, (n&2)�(n+2)], x*(t)� &1. From here

max
x # [&1, 1]

| f $(x)|=| f $(&1)|

and we can proceed as in the case (a).
It is geometrically evident that

f=(x) :=f (x)&
=
2n (1&x)n&1 [(n&1) x+n+1]

=_ct&
(n&1)

2n =& (&1)n&1 xn+ :
n&1

k=0

ck xk

will have one real zero less than &1 if = is sufficiently small (=>0) such
that f=(&1)>0 and (ct&((n&1)�2n) =)>0.

Using that f $=(&1)= f $(&1) we claim that

& f $=&��& f $&� .

The inequality 0< f=(x)< f (x), &1�x<1 gives that & f=&p<& f &p and

& f $=&�

& f=&p
>

& f $&�

& f &p
.

The proof in the case (c) is completed.

(d) t # [(n&2)�(n+2), (n&2)�n]. Consider f (x)=c(1+tx)(1&x)n&1,
c>0.

The local extremum of f $(x), x*(t)=(2t&n+2)�nt belongs to [&1, 1).
In this case f $(x) is decreasing from &1 to x*(t) and increasing from x*(t)
to 1; f $(x)�0, (&1�x�1), so we conclude

& f $&�=| f $(x*(t))|.

The polynomial

px*(x) :=
(1&x)n&1

(1&x*)n [(n&1) x+1&nx*]

satisfies px*(x*)=1, p$x*(x*)=0 and px*(x)�0 for &1�x�1.
By making use of px*(x) we form a variational polynomial

f=(x)= f (x)&=px*(x).
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The same arguments as in (c) show that

& f $=&�

& f=&p
>

& f $&�

& f &p

and f= # en, 1 for = sufficiently small (=>0).

Remark 6. Note that the above arguments are inapplicable when
t=&1. This leads us to consider c(1&x)n as a candidate for an extremal,
so let us denote f

*
(x) :=(1&x)n.

Now we consider an auxiliary extremal problem

sup
f # en, 1

& f $&�

& f &p
=max \ sup

t # [(n&2)�n, 1)

&[c(1+tx)(1&x)n&1]$&�

&c(1+tx)(1&x)n&1&p
,
& f $

*
&�

& f
*

&p +
=max \ max

t # [(n&2)�n, 1]

&[(1+tx)(1&x)n&1]$&�

&(1+tx)(1&x)n&1&p
,
& f $

*
&�

& f
*

&p + .

Let ft(x) :=(1+tx)(1&x)n&1 and n�3 then

& f $t &�=max(| f $t(x*(t))|, | f $t(&1)

=max \\n&2
n +

n&2 (1+t)n&1

tn&2 , 2n&2 |(n&1) t&n+1+2t|+
and from here we conclude

sup
f # en, 1

& f $&�

& f &p

=max \ max
t # [(n&2)�n, 1]

| f $t(x*(t))|
& ft&p

, max
t # [(n&2)�n, 1]

| f $t(&1)|
& ft &p

,
& f $

*
&�

& f
*

&p + .

From the method of the proof of Lemma 6 it easily follows that

max
t # [(n&2)�n, 1]

| f $t(&1)|
& ft &p

�max _ | f $1(&1)|
& f1&p

,
| f $&1(&1)|

& f&1&p &
=max _ | f $1(&1)|

& f1&p
,
& f $

*
&�

& f
*

&p & ,

0� p��.

(A) Now we consider for 0<p<� the extremal problem

max
t # [(n&2)�n, 1]

| f $t(x*(t))|
& ft &p

=21�p \n&2
n +

n&2

_ max
t # [(n&2)�n, 1]

(1+t) (n&1) p

t(n&2) p

_
1

�1
&1 (1&x) (n&1) p (1+tx) p dx&

1�p
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which is equivalent to the auxiliary extremal problem

min
t # [(n&2)�n, 1]

�1
&1 (1&x) (n&1) p (1+tx) p dx

(1+t) (n&1) p t(n&2) p . (6)

In the above considerations we need the restriction n�3. The case n=2
will be studied in the next remark.

Remark 7. The case n=2 of the extremal problem (1). Lemma 6
shows that we have to consider only the case when the second zero of our
polynomial of degree 2 is less than &1. In this case we have

& f $&�=| f $(1)|

and

f=(x)= f (x)&=(x&1)2

for sufficiently small = (=>0) shows that f cannot be extremal for t # (0, 1).
So, we obtain that the only candidates for extremals in the case n=2 are
c(1&x)2, c(1+x)2, c(1&x)(1+x).

Now we continue with the auxiliary problem (6), n�3.
Denote

8p(t) :=
�1

&1 (1&x) (n&1) p (1+tx) p dx t (n&2) p

(1+t) (n&1) p

D1(t) :=|
1

&1
(1&x) (n&1) p (1+tx) p&1 x dx

D(t) :=|
1

&1
(1&x) (n&1) p (1+tx) p dx

D0(t) :=|
1

&1
(1&x) (n&1) p (1+tx) p&1 dx.

Our problem is

min
t # [(n&2)�n, 1]

8p(t).

For the first derivative of 8p(t) we obtain

1
p

8$p(t)
8p(t)

=
�1

&1 (1&x) (n&1) p (1+tx) p&1 x dx
�1

&1(1&x) (n&1) p (1+tx) p dx
+

n&2&t
t(1+t)
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and

8$p(t)=0 is equivalent to
D1(t)
D(t)

=
t&n+2
t(1+t)

.

The case p=1 is trivial. We have

8$1(t)
81(t)

=
&t(n2&n+2)+n2&n&2

t(1+t)(n+1&t(n&1))

and

min
t # [(n&2)�n, 1]

81(t)=min \81 \n&2
n + , 81(1)+

81(1)=
4

n(n+1)
;

81 \n&2
n +=

(n&2)n&2

(n&1)n&1 (2n&1)
4

n(n+1)
.

For n=3 and n=4 we have min(81((n&2)�n), 81(1))=81(1).
On the other hand

(n&2)n&2

(n&1)n&1 (2n&1)=\1&
1

n&1+
n&2

\2+
1

n&1+ ww�n � �

2
e

<1.

So for n sufficiently big we have

min \81 \n&2
n + , 81(1)+=81 \n&2

n + .

Let us now consider the case p # (0, +�), p{1. We have

sgn(8$p(1))=sgn _1&
1[(n&1) p+1] 1( p) 2(n&1) p+ p1(np+2)

_1[(n&1) p+ p+1] 2np+1

_1[(n&1) p+1] 1( p+1)& &
=sgn _&

1
2

&
1
2p&<0.
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It follows that 8$p(t)<0 in (1&$, 1) and 8p(t) is strictly decreasing in
(1&$, 1).

Now we will study

sgn {8"p(t) : t # \n&2
n

, 1+ , 8$p(t)=0= .

We have

1
p

8$p(t)
8p(t)

=
D1(t)
D(t)

&
t&n+2
t(1+t)

1
p _

8"p(t)
8p(t)

&\8$p(t)
8p(t)+

2

&=
D$1(t)
D(t)

&
D1(t) D$(t)

[D(t)]2 +
t2&2(n&2) t&n+2

t2(1+t)2

D$(t)= p |
1

&1
(1&x) (n&1) p (1+tx) p&1 x dx= pD1(t)

D0(t)+tD1(t)
D(t)

=1, and
D0(t)
D(t)

=
n&1
1+t

.

It follows that

sgn {8"p(t) : t # \n&2
n

, 1+, 8$p(t)=0=
=sgn {D$1(t)

D(t)
&

D1(t) D$(t)
[D(t)]2 +

t2&2(n&2) t&n+2
t2(1+t)2 = .

D$1(t)=( p&1) |
1

&1
(1&x) (n&1) p (1+tx) p&2 x2 dx. (7)

The polynomial x2 can be represented by using Lagrange interpolation at
&1, +1, &1�t{&1, 1.

x2=
1

2(1&t)
(1&x)(1+tx)+

1
2(1+t)

(1+x)(1+tx)&
1

1&t2 (1&x2)
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Replacing x2 with the right-hand side of the above formula in (7) we
obtain

D$1(t)=
p&1

2(1&t) |
1

&1
(1&x) (n&1) p (1+tx) p&1 (1&x) dx

+
p&1

2(1+t) |
1

&1
(1&x)(n&1) p (1+tx) p&1 (1+x) dx

+
p&1
1&t2 |

1

&1
(1&x) (n&1) p (1+tx) p&2 (1&x2) dx

=
p&1

2(1&t)
[D0(t)&D1(t)]+

p&1
2(1+t)

[D0(t)+D1(t)]+R(t)

where after integrating by parts we get

R(t)=
1

t(1&t2)
[&(n&1) p D0(t)&(2+(n&1) p) D1(t)].

The above formulas give the representation

D$1(t)
D(t)

=
(n&1)( p&1) t2&(n&1)2 pt&( p&1) t3

t2(1+t)2 (1&t)

+
_(n&2)( p&1) t2&(2+(n&1) p) t

+(n&2)(2+(n&1) p) &
t2(1+t)2 (1&t)

D1(t)
D(t)

=
t&n+2
t(1+t)

,
D0(t)
D(t)

=
n&1
1+t

,
D$(t)
D(t)

= p
D1(t)
D(t)

.

Finally we obtain

sgn {8"p(t) : t # \n&2
n

, 1+ , 8$p(t)=0=
=sgn {( p+1)(&tn+n&2) : t # \n&2

n
, 1+=<0.

The above sign inequality shows that 8p(t) may have only one local
extremum in [(n&2)�n, 1] and it must be a local maximum.

We make an important for the solution of The problem (1) conclusion that

min
t # [(n&2)�n, 1]

8p(t)=min _8p \n&2
n + , 8p(1)& . (8)
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Now, we sum up on the basis of the Eq. (8), that was obtained by studying
the extremal problem (6) we claim that

sup
f # en, 1

& f $&�

& f &p
=max \} f $(n&2)�n \x* \n&2

n ++}
& f (n&2)�n&p

,
| f $1(&1)|

& f1&p
,
& f $

*
&�

& f
*

&p + ,

0<p<�. (9)

observing that | f $1(&1)|>| f $1(x*(1))|=| f $1(4&n)�n)|.

(B) The case p=0. In this case our extremal problem (6) looks as
follows

min
t # [0, 1]

80(t)= min
t # [0, 1]

tn&2

(1+t)n&1 exp \1
2 |

1

&1
ln[(1&x)n&1 (1+tx)] dx+

and

t2 8$0(t)
80(t)

=
(n&1) t

1+t
&

1
2

ln(1+t)+
1
2

ln(1&t), t # [0, 1].

Hence, there is x0 # ((n&2)�n, 1) such that

8$0(t){
<0, t # (x0 , 1)

>0, t # _n&2
n

, x0+ .

From here

min
t # [(n&2)�n, 1]

80(t)=min _80 \n&2
n + , 80(1)&

and this completes our consideration in the case p=0.
Taking into account that f1(x)=(1+x)(1&x)n&1 is a solution of the

extremal problem (3) and on the basis of (9) we claim that

sup
f # Pn

& f $&�

& f &p
=max \ | f $1(&1)|

& f1 &p
,
& f $

*
&�

& f
*

&p + , 0�p<� (10)

observing that f(n&2)�n(x) cannot be extremal (see Lemma 6) for the extremal
problem (1).
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In the next lemma we will compare the values of

| f $1(&1)|
& f1&p

and
& f $

*
&�

& f
*

&p
=

| f $&1(&1)|
& f&1&p

when p varies from 0 to �.

Lemma 7. The following inequalities hold

(a)
| f $1(&1)|

& f1 &p
<

& f $
*

&�

& f
*

&p
, 0�p<1;

(b)
& f $

*
&�

& f
*

&p
<

| f $1(&1)|
& f1&p

, p>1;

(c)
& f $

*
&�

& f
*

&1

=
| f $1(&1)|

& f1&1

, p=1.

Proof. If p=0, then

| f $1(&1)|
& f1&0

=
2n&1

exp \1
2 |

1

&1
n ln(1&x) dx+

<
n2n&1

exp \1
2 |

1

&1
n ln(1&x) dx+

=
n
2

en=
& f $

*
&�

& f
*

&0

.

If 0<p<�, then

| f $1(&1)|
& f1&p

=
1
2 \

1( pn+2)
1( pn& p+1) 1( p+1)+

1�p

and

& f $
*

&�

& f
*

&p
=

1
2

n(np+1)1�p.

In the case n=1 the statement of the lemma is trivial.
Let n�2. first we show that for the derivative of

,p(v)=
1(vp+1)

v p1[(v&1) p+1]
; v # R, v�2, 0<p<�
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we have the formula

1
p

,$p(v)
,p(v)

= :
�

s=0
\ 1

(v&1) p+1+s
&

1
vp+1+s+&

1
v

=\ :
�

s=0 \
1

(v&1) p+1+s
&

1
vp+1+s+&

1
vp++

1
vp

&
p
vp

.

Consider the finite sum

:
N

s=0
\ 1

(v&1) p+1+s
&

1
vp+1+s+&

1
vp

= :
N

s=0
\ 1

vp+1& p+s
&

1
vp+s+&

1
vp+N+1

.

Taking the limit when N � � we obtain that the both series have the same
sum. Hence

1
p

,$p(v)
,p(v)

= :
�

s=0
\ 1

vp+1& p+s
&

1
vp+s++

1& p
vp

= :
�

s=0

&
1& p

(vp+1& p+s)(vp+s)
+

1& p
vp

.

(a) Let 0<p<1. We have

&
1& p

(vp+1& p+s)(vp+s)
<&

1& p
(vp+1+s)(vp+s)

=( p&1) \ 1
vp+s

&
1

vp+1+s+ .

The above formula gives that

:
�

s=0

p&1
(vp+1& p+s)(vp+s)

<( p&1) :
�

s=o \
1

vp+s
&

1
vp+1+s+=

p&1
vp

.

Hence

1
p

,$p(v)
,p(v)

< &
1& p

vp
+

1& p
vp

=0

and

,p(v)<,p(1)=1( p+1).
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(b) Let p>1. We have

&
1& p

(vp+1& p+s)(vp+s)
>&

1& p
(vp+1+s)(vp+s)

=( p&1) \ 1
vp+s

&
1

vp+1+s+ .

and from here

:
�

s=0

p&1
(vp+1& p+s)(vp+s)

>( p&1) :
�

s=o \
1

vp+s
&

1
vp+1+s+=

p&1
vp

.

Hence

1
p

,$p(v)
,p(v)

> &
1& p

vp
+

1& p
vp

=0

and

,p(v)>,p(1)=1( p+1).

The following representation ends the proof of the lemma

\ | f $1(&1)|
& f1&p +\& f $

*
&�

& f
*

&p +
&1

=\ ,p(n)
1( p+1)+

1�p

.

Note, that

& f $
*

&�

& f
*

&0

=
n
2

en;
& f $

*
&�

& f
*

&p
=

| f $
*

(&1)|
& f

*
&p

=
1
2

n(np+1)1�p.

On the basis of (10) and Lemma 7 we obtain the solution of the problem (1)
that is contained in the next theorem.

3. THE SOLUTION OF THE PROBLEM (1)

Summing up we have proved the following theorem.
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Theorem 1. If f # Pn , then

sup
f # Pn

& f $&�

& f &p
=

& f $
*

&�

& f
*

&0

=
n
2

en, p=0;

& f $
*

&�

& f
*

&p
=

1
2

n(np+1)1�p, 0<p�1;

& f $
*

&�

& f
*

&1

=
& f $1 &�

& f1&1

=
n(n+1)

2
, p=1;

& f $1&�

& f1&p
=

1
2 \

1( pn+2)
1( pn& p+1) 1( p+1)+

1�p

, p�1.

In the case 0�p<1 the only extremal polynomials are c(1&x)n and
c(1+x)n, c # R, c{0.

In the case p=1 the only extremal polynomials are c(1&x)n, c(1+x)n,
c(1&x)(1+x)n&1, and c(1+x)(1&x)n&1, c # R, c{0.

In the case p>1 the only extremal polynomials are c(1&x)(1+x)n&1 and
c(1+x)(1&x)n&1, c # R, c{0.

By using Stirling's formula, Theorem 1 gives the exact asymptotic of
& f $&� �& f &p , f # Pn .

Corollary 1. If f # Pn , then

sup
f # Pn

& f $&�

& f &p
=O(n1+1�p), n [ �, 0<p<�

(one may compare with Theorem A).

Remark 8. If f # Pn and f>0 on (&1, 1), then f # ?n . In other words

f (x)= :
n

k=0

Ak(1+x)k (1&x)n&k, Ak�0, k=0, 1, ..., n. (11)

This fact is proved in [12] but it is really contained in an earlier result of
Meissner [9]. On the basis of (11) and by using the Fundamental theorem
of Linear Programming the exact value n(n+1)�2 of sup[& f $&� �& f &1 ,
f # Pn] is given in [11]. Note, that taking a limit in Theorem 1, when
p [ � we obtain

204 DRYANOV AND VATCHEV



sup[& f $&� �& f &� , f # Pn]=& f $1 &��& f1&�

=_(1�2) \1&
1
n+

&n+1

& n

<n lim
n [ � _(1�2) \1&

1
n+

&n+1

&=
e
2

n.
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