On a Polynomial Inequality of Paul Erdős¹

D. P. Dryanov² and V. Vatchev

Department of Mathematics, University of Sofia, Boul. James Boucher 5, 1164 Sofia, Bulgaria E-mail: ddryan@argo.bas.bg; dryanovd@fmi.uni-sofia.bg

Communicated by Peter B. Borwein

Received December 4, 1998; accepted September 16, 1999

Let f be a real polynomial having no zeros in the open unit disk. We prove a sharp evaluation from above for the quantity $||f'||_{\infty}/||f||_p$, $0 \le p < \infty$. The extremal polynomials and the exact constants are given. This extends an inequality of Paul Erdős [7]. © 2000 Academic Press

Key Words: polynomial inequalities of Erdős type, exact constants, exact asymptotic.

1. INTRODUCTION AND STATEMENT OF THE PROBLEM

For any continuous function $f: [-1, 1] \rightarrow \mathbb{C}$ and $p \in (0, \infty)$ let

$$||f||_p := \left(\frac{1}{2}\int_{-1}^1 |f(x)|^p dx\right)^{1/p};$$

besides, let

$$||f||_{\infty} := \max_{-1 \le x \le 1} |f(x)|.$$

It is known that $||f||_p$ tends to the limit

$$\exp\left(\frac{1}{2}\int_{-1}^{1}\log|f(x)|\,dx\right)$$

when $p \to 0$. This is exactly the value given to the functional $||f||_p$ when p = 0.

Let f be a real polynomial. If f has no zeros in the open unit disk then $||f'||_{\infty}$ can be best possible estimated from above by $||f||_p$, $0 \le p \le \infty$. To the best of our knowledge the first result of this type for polynomials with restricted zeros was obtained by Erdős [7] in the case $p = \infty$.

² Current address: Dépt. de Math. et de Stat., Univ. de Montréal, Pavillon André-Aisenstadt, Montréal H3C 3J7, P.Q., Canada; e-mail: dryanovd@dms.umontreal.ca.

¹ Research partially supported by Sofia University grant No. 314/99.

THEOREM A. Let f be a real polynomial of degree at most n such that $||f||_{\infty} = 1$. If the zeros of f are all real and lie on $\mathbf{R} \setminus (-1, 1)$ then

$$\|f'\|_{\infty} \leqslant \left[\frac{1}{2}\left(1-\frac{1}{n}\right)^{-n+1}\right]n.$$

Equality is possible only at -1, +1 and it holds only for

$$f_{ex,1}(x) := \frac{n^n}{2^n (n-1)^{n-1}} (1+x)(1-x)^{n-1}$$

and

$$f_{ex,2}(x) := \frac{n^n}{2^n (n-1)^{n-1}} (1+x)^{n-1} (1-x).$$

It can be seen that the exact asymptotic of $||f'||_{\infty}/||f||_{\infty}$ with respect to the polynomial degree is *n*. This is smaller than n^2 , which is the exact asymptotic in the corresponding inequality for polynomials without restrictions on the zeros, see [8].

Without any restriction we can assume that each polynomial, belonging to the class introduced in Theorem A, is positive on (-1, 1). By using a wider class of polynomials (see Remark 8)

$$\pi_n := \left\{ f : f(x) = \sum_{k=0}^n A_k (1+x)^k (1-x)^{n-k}, A_k \ge 0, k = 0, 1, ..., n \right\}$$

introduced by Bernstein (see [3, 4]) an extension of Theorem A is due to Sheick [12].

THEOREM B. If $f \in \pi_n$, then

$$\|f'\|_{\infty} \leqslant \frac{e}{2} n \|f\|_{\infty}.$$

On the basis of a sharp point-wise bound for $|f'(x)|/||f||_{\infty}$ at an arbitrarily prescribed point x on the unit interval the next theorem is given in [1].

THEOREM C. If f is a real polynomial of degree at most n such that $||f||_{\infty} = 1$ and $f(z) \neq 0$, |z| < 1, then

$$\|f'\|_{\infty} \leq \left[\frac{1}{2}\left(1-\frac{1}{n}\right)^{-n+1}\right]n$$

with a case of equality only for $f_{ex, 1}$ and $f_{ex, 2}$.

Another contribution to this subject can be seen in [2], where the following theorem has been proved.

THEOREM D. If f is a real polynomial of degree at most n having at most k zeros in the open unit disk, then there exists an absolute constant c, such that

$$\|f'\|_{\infty} \leq cn(k+1) \|f\|_{\infty}$$

Note, that the estimate is sharp up to the best possible constant. A short proof of the above theorem based on D. Newman inequality [10] for Münz polynomials and Meissner's representation (see Remark 8 of this paper) can be seen in [6]. The best constants case is known only in the cases k = 0, [1, 7, 12] and k = n, [8].

Let $q_{n,k}(x) = (1+x)^k (1-x)^{n-k}$ and $q_{n,k,*}(x) = (n^n q_{n,k}(x))/(2^n k^k (n-k)^{n-k})$. Note that $||q_{n,k,*}||_{\infty} = 1$. The next Erdős–Nikolskii type inequality between different metrics is proved in [5].

THEOREM E. Let f be a polynomial of degree at most n with real coefficients and having no zeros in the open unit disk. Suppose, in addition, that f has zeros of multiplicity at least μ at -1 and 1, where $0 \le \mu \le \lfloor n/2 \rfloor$. If f is not a constant multiple by $q_{n,\mu}$ or $q_{n,n-\mu}$, then

$$||f||_{p} > ||q_{n,\mu,*}||_{p} ||f||_{\infty}, \quad 0 \le p < \infty.$$

As a corollary of Theorem C and Theorem E the best possible estimate of $||f'||_{\infty}/||f||_p$ from above is given in [5] but under the additional boundary assumption

$$f(-1) = f(1) = 0 .$$

COROLLARY A. Let f be a real polynomial of degree at most n, such that f(-1) = f(1) = 0 and $f(z) \neq 0$ for |z| < 1. If f is not a constant multiple by $q_{n,1}$ or $q_{n,n-1}$ then

$$\|f'\|_{\infty} < \frac{\|q'_{n,1}\|_{\infty}}{\|q_{n,1}\|_{p}} \|f\|_{p}, \qquad 0 \le p < \infty.$$

Now a natural question arises, stated by Professor Q. I. Rahman in a joint discussion with the first named author: If it is possible that the boundary conditions f(-1) = f(1) = 0 can be removed from the statement of Corollary A. It is logical to believe, following [7], that these boundary conditions are superfluous in the statement of Corollary A at least for p > 1.

We will answer the above mentioned question by giving the exact solution of the extremal problem, given in Corollary A, without the boundary condition f(-1) = f(1) = 0. Our method is based on a technical refinement of a variational approach, given in [5].

Let \mathscr{P}_n denote the class of all real polynomials of degree at most *n* having no zeros in the open unit disk, i.e. $f(z) \neq 0$, |z| < 1. Then our extremal problem reads as follows. Find

$$\sup_{f \in \mathscr{P}_{p}} \frac{\|f'\|_{\infty}}{\|f\|_{p}}, \qquad 0 \leq p < \infty.$$

$$\tag{1}$$

Remark 1. Without any restriction in the process of our considerations we can assume that \mathscr{P}_n consists of polynomials which are positive on (-1, 1).

Remark 2. We will show that the boundary conditions f(-1) = f(1) = 0 in Corollary A are superfluous when p > 1 (see Theorem 1). This means that the extremal polynomials of (1) has to satisfy f(-1) = f(1) = 0 in the case p > 1. If $0 \le p < 1$ and we do not put the boundary condition f(-1) = f(1) = 0, (see Theorem 1) then the extremal polynomials of (1) will differ from the extremal polynomials of the corresponding to (1) problem with the boundary conditions f(-1) = f(1) = 0 (this case is settled in Corollary A).

Remark 3. In the process of solving the problem (1) we will see that in the case $0 \le p \le 1$ new effects appears. Namely, the extremal polynomials of problem (1) do not satisfy the boundary condition f(-1) = f(1) = 0, when $0 \le p < 1$. In the case p = 1 we will see that the problem (1) has two classes of extremal polynomials. One of them satisfies f(-1) = f(1) = 0 whereas the other does not. In the case p > 1 the extremal polynomials of (1) must satisfy the condition f(-1) = f(1) = 0 and this means that the condition f(1) = f(-1) = 0 is superfluous in the statement of Corollary A for p > 1.

Problem. For a fixed p, $0 \le p < \infty$, find the exact value and the extremal polynomials of (1).

2. AUXILIARY RESULTS

The solution of the problem (1) is based on a technical refinement of a variational approach that is described in [5] and will be presented as a sequence of lemmas.

LEMMA 1. The problem (1) possesses an extremal polynomial. In other words

$$\sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} = \max_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p}$$

Proof. From Theorem A and Theorem C we have

$$||f'||_{\infty} \leq \frac{1}{2} \left(1 - \frac{1}{n}\right)^{-n+1} n ||f||_{\infty} \leq C(n, p) ||f||_{p},$$

so

$$\sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} \leq C(n, p) < +\infty.$$

Let f_k be a sequence of polynomials from \mathcal{P}_n such that

$$\frac{\|f'_k\|_{\infty}}{\|f_k\|_p} \ge \sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} - \frac{1}{k}.$$

Consider polynomials $g_k := f_k / ||f_k||_p$. It is evident that $||g_k||_p = 1$ for k = 1, 2, ...

From the above-mentioned papers it follows that $||g_k||_{\infty} \leq C(n, p)$ for k = 1, 2, ... We choose from the sequence $\{g_k\}_{k=1}^{\infty}$ a locally uniformly convergent subsequence and denote it by $\{g_k\}_{k=1}^{\infty}$.

The locally uniform limit g of $\{g_k\}_{k=1}^{\infty}$ must be a polynomial of degree at most n. By Lebesgue's dominated convergence theorem it follows that $\|g\|_p = 1$ and from here the limit function g is not identically zero. Hurwitz's theorem shows that $g \in \mathscr{P}_n$. In particular $g(x) \neq 0$ on -1 < x < 1.

The degree of our polynomials $g_k(x)$ for k = 1, 2, ... is fixed and the locally uniform convergence is an invariant property with respect to differentiation. This means that $g'_k \to g'$ locally uniformly, when $k \to \infty$.

From the above considerations it is easily seen that

$$\lim_{k \to \infty} \|g_k\|_p = \|g\|_p, \qquad \lim_{k \to \infty} \|g'_k\|_\infty = \|g'\|_\infty.$$

Hence we have

$$\sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} \ge \frac{\|g'\|_{\infty}}{\|g\|_p} = \|g'\|_{\infty} = \lim_{k \to \infty} \frac{\|g'_k\|_{\infty}}{\|g_k\|_p} = \lim_{k \to \infty} \frac{\|f'_k\|_{\infty}}{\|f_k\|_p} \ge \sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p}$$

which gives

$$\frac{\|g'\|_{\infty}}{\|g\|_p} = \sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p}.$$

The proof is completed. The conclusion is that an extremal polynomial exists.

Let us denote by ρ_n the subclass of \mathcal{P}_n consisting of polynomials having only real zeros, i.e.

$$\rho_n = \{ f: f \in \mathcal{P}_n, f \text{ has only real zeros} \}$$

The next lemma indicates that while looking for extremal polynomials of (1) we only need to examine those polynomials of \mathscr{P}_n whose all zeros are real.

LEMMA 2. We have

$$\sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} = \sup_{f \in \rho_n} \frac{\|f'\|_{\infty}}{\|f\|_p}.$$

Proof. If $deg(f) \le 1$ the statement of the lemma is trivial. Let $deg(f) \ge 2$ and let f have at least one non-real zero. Without any restriction we may assume that f is positive on (-1, 1). Since f is real, f has a pair of conjugate zeros, so f(z) = g(z)(z - a - ib)(z - a + ib), $b \in R$, $b \ne 0$.

Let $\xi \in [-1, 1]$ be such that

$$||f'||_{\infty} = |f'(\xi)|.$$

Consider an auxiliary polynomial

 $f_{\varepsilon}(z) = f(z) - \varepsilon g(z)(z - \xi)^2$, ε sufficiently small and positive.

Note that $f'_{\varepsilon}(\xi) = f'(\xi)$ and from here

$$\|f'_{\varepsilon}\|_{\infty} \ge |f'_{\varepsilon}(\xi)| = |f'(\xi)| = \|f'\|_{\infty}.$$

Now $f_{\varepsilon}(z)$ can be represented as follows

$$f_{\varepsilon}(z) = g(z)((1-\varepsilon) z^2 + 2(\xi \varepsilon - a) z + a^2 + b^2 - \varepsilon \xi^2)$$

and the quadratic

$$(1-\varepsilon) z^2 + 2(\xi\varepsilon - a) z + a^2 + b^2 - \varepsilon\xi^2$$

must have a pair of conjugate zeros for ε sufficiently small ($\varepsilon > 0$) because $b \neq 0$. So

$$f_{\varepsilon}(z) = (1 - \varepsilon) g(z)(z - z_{1,\varepsilon})(z - \overline{z}_{1,\varepsilon}).$$

We have

$$|z_{1,\varepsilon}|^2 = z_{1,\varepsilon}\bar{z}_{1,\varepsilon} = \frac{a^2 + b^2 - \varepsilon\xi^2}{1 - \varepsilon} \ge 1.$$

and $z_{1,\epsilon}$, $\bar{z}_{1,\epsilon}$ do not belong to the open unit disk. On the other hand $\max_{x \in [-1, 1]} |f(x)| = f(x^*) > 0$ and for $\epsilon > 0$ and sufficiently small $f_{\epsilon}(x^*) > 0$. Hence $f_{\epsilon}(x) > 0$ for -1 < x < 1. The conclusion is that $f_{\epsilon}(z) \in \mathcal{P}_n$.

By assumption f > 0 on (-1, 1) and from here g > 0 on (-1, 1). It follows that

$$0 < f_{\epsilon}(x) < f(x), \qquad x \in (-1,1) \setminus \{\xi\}$$

and

$$\|f_{\varepsilon}\|_p < \|f\|_p.$$

Thus

$$\frac{\|f'\|_{\infty}}{\|f\|_{p}} < \frac{\|f'_{\varepsilon}\|_{\infty}}{\|f_{\varepsilon}\|_{p}}$$

and this ends the proof of the lemma.

Remark 4. Note that if b = 0 the above considerations do not work and we may have a pair of real zeros and at least one of them can be in the open unit disk.

If deg(f) = 0 then $\sup_{f \in \mathscr{P}_0} ||f'||_{\infty}/||f||_p = 0$ so the problem is trivial and each non-zero constant polynomial is a solution of our problem. If deg(f) = 1 then it is evident that the only extremal polynomials are c(x+1) and c(1-x), $c \in \mathbf{R}$, $c \neq 0$.

In what follows we assume $n \ge 2$.

LEMMA 3. If $f \in \rho_n$ and $f(-1) f(1) \neq 0$ then f cannot be extremal. *Proof.* Without any restriction let f > 0 on (-1, 1), $f \in \rho_n$ and let

$$\min_{x \in [-1, 1]} f(x) = \min[f(-1), f(1)] > 0$$

Consider the polynomial $f_{\varepsilon}(z) := f(z) - \varepsilon$, for ε sufficiently small ($\varepsilon > 0$).

Let $C_1 = \{z : z \in C, |z| \le 1\}$ be the unit disk in the complex plane and $x_1, x_2, ..., x_n$ be the zeros of f.

Since $\min_{1 \le i \le n} |x_i| > 1$, then $\min_{\{i=1, 2, ..., \text{ and } z \in C_1\}} |x_i - z| > 0$ and from this and from Hurwitz's theorem we have $f_{\varepsilon}(z) \in \mathcal{P}_n$ for $\varepsilon > 0$ and sufficiently small. Note that $f_{\varepsilon}(z)$ may have complex zeros. If $\varepsilon \le \min[f(-1), f(1)]$ then

$$0 < f_{\varepsilon}(x) < f(x), \quad -1 < x < 1$$

and

$$f'_{\varepsilon}(x) = f'(x).$$

It is easily checked that

$$\frac{\|f'\|_{\infty}}{\|f\|_{p}} < \frac{\|f'_{\varepsilon}\|_{\infty}}{\|f_{\varepsilon}\|_{p}}, \qquad f_{\varepsilon} \in \mathscr{P}_{n}$$

and this completes the proof.

LEMMA 4. If $f(x) \in \rho_n$ and f possesses at least two zeros in $R \setminus [-1, 1]$ counting their multiplicities then f(x) cannot be an extremal polynomial of (1).

Proof. Let ξ be a point of [-1, 1] where |f'(x)| attains the maximum value($||f'||_{\infty} = |f'(\xi)|$). First we observe that f cannot have zeros in $(-\infty, -1)$ and $(1, \infty)$ at the same time. Suppose it does. Let λ_{-} be the smallest zero of f and λ_{+} be the largest one. It is easily seen that for all small $\varepsilon > 0$ the polynomial

$$f_{\varepsilon}(z) := f(z) + \frac{\varepsilon f(z)}{(z - \lambda_{-})(z - \lambda_{+})} (z - \xi)^{2}$$

belongs to ρ_n and $0 < f_{\varepsilon}(x) < f(x)$ for all $x \in (-1, 1) \setminus \{\xi\}$. On the other hand

$$\|f'_{\varepsilon}\|_{\infty} \ge |f'_{\varepsilon}(\zeta)| = \|f'(\zeta)\| = \|f'\|_{\infty}$$

and we see that

$$\frac{\|f'\|_{\infty}}{\|f\|_{p}} < \frac{\|f'_{\varepsilon}\|_{\infty}}{\|f_{\varepsilon}\|_{p}}.$$

Assume that f has no zeros in $(-\infty, -1)$. We claim that f cannot have two or more zeros in $(1, \infty)$ counting their multiplicities. Suppose it does.

Let λ_1 be the largest zero of f and λ_2 the largest but one. If λ_1 is double zero then $\lambda_1 = \lambda_2$.

It is geometrically evident that for all small $\varepsilon > 0$, the polynomial

$$f_{\varepsilon}(z) := f(z) - \frac{\varepsilon f(z)}{(z - \lambda_1)(z - \lambda_2)} (z - \xi)^2$$

belongs to ρ_n and $0 < f_{\varepsilon}(x) < f(x)$ for all $x \in (-1, 1) \setminus \{\xi\}$. From here we clearly have

$$\frac{\|f'\|_{\infty}}{\|f\|_p} < \frac{\|f'_{\varepsilon}\|_{\infty}}{\|f_{\varepsilon}\|_p}.$$

The proof is completed.

We have proved that if f is extremal for the problem (1) it must be of the following form

$$f(x) = c(1+tx)(1-x)^{j}(1+x)^{k},$$

where $|t| \le 1, \quad k+j \le n-1, \quad c \in \mathbf{R}, \quad c \ne 0.$

By using an analogous variational construction one may show that j+k=n-1 if f is extremal. The point ξ is chosen by analogy such that

$$||f'||_{\infty} = |f'(\xi)|.$$

The above considerations can be summarized in the following lemma.

LEMMA 5. If f is an extremal polynomial of the problem (1) then f must be of the form

$$f(x) = c(1+tx)(1-x)^{n-k-1}(1+x)^k,$$

where $-1 \leq t \leq 1$, $0 \leq k \leq n-1$, $c \in \mathbf{R}$, $c \neq 0$.

Remark 5. Lemma 3 is a corollary of Lemma 5, note that $n \ge 2$. Lemma 5 shows that while searching for an extremal polynomials of the problem (1) we need only examine those from the class

$$\begin{split} e_n &:= \big\{ f \colon f(x) = c(1+x)^k \, (1-x)^{n-k-1} \, (1+tx); \\ &\quad 0 \leqslant k \leqslant n-1, \, -1 \leqslant t \leqslant 1, \, c > 0 \big\}. \end{split}$$

Note that without any restriction we can suppose that f(x) > 0 on (-1, 1).

Let

$$\begin{split} e_{n,\,1} &:= \big\{ f \colon f \in e_n; \, f(1) = 0, \, f(-1) > 0 \big\} \\ e_{n,\,-1} &:= \big\{ f \colon f \in e_n; \, f(-1) = 0, \, f(1) > 0 \big\} \\ e_{n,\,-1,\,1} &:= \big\{ f \colon f \in e_n; \, f(1) = f(-1) = 0 \big\}. \end{split}$$

We have

$$\max_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} = \max\left(\max_{f \in e_{n,-1}} \frac{\|f'\|_{\infty}}{\|f\|_p}, \max_{f \in e_{n,1}} \frac{\|f'\|_{\infty}}{\|f\|_p}, \max_{f \in e_{n,-1,1}} \frac{\|f'\|_{\infty}}{\|f\|_p}\right).$$
(2)

The above formula shows that we can divide our problem into 3 problems. The first one,

$$\max_{f \in e_{n, -1, 1}} \frac{\|f'\|_{\infty}}{\|f\|_{p}},\tag{3}$$

is the problem which is given by Corollary A, (see [5, Corollary 2]). The extremal polynomials in this case have the form

 $c(1-x)(1+x)^{n-1}$, and $c(1+x)(1-x)^{n-1}$, c > 0.

It is obvious that if f(x) is extremal for the problem

$$\max_{f \in e_{n,-1}} \frac{\|f'\|_{\infty}}{\|f\|_{p}}$$

then f(-x) is extremal for

$$\max_{f \in e_{n,1}} \frac{\|f'\|_{\infty}}{\|f\|_p}.$$

and vice versa.

We make the conclusion that to find the extremals of problem (1) we need only study the problem

$$\max_{f \in e_{n,1}} \frac{\|f'\|_{\infty}}{\|f\|_{p}}.$$
(4)

The class $e_{n,1}$ consists of all polynomials of the form

$$e_{n,1} := \{ f : f(x) = c(1+tx)(1-x)^{n-1}, c > 0, -1 \le t < 1 \}.$$

LEMMA 6. If $t \in (-1, (n-2)/n]$ then the polynomial f(x) = c(1+tx) $(1-x)^{n-1}$, c > 0 cannot be extremal for the problem (1).

Proof. For clarity we divide the proof into four cases with respect to the parameter t.

(a) Let first $t \in (-1, 0)$. By using the polynomial

$$p_{-1}(x) := \frac{(1-x)^{n-1}}{2^n} \left[(n-1) x + n + 1 \right]$$

 $p_{-1}(-1) = 1$, $p'_{-1}(-1) = 0$ and $p_{-1}(x) \ge 0$ for $-1 \le x \le 1$ we construct a variational polynomial

$$f_{\varepsilon}(x) := f(x) - \varepsilon p_{-1}(x).$$

It is geometrically evident that $f_{\varepsilon}(x)$ must have one real zero greater than 1 and smaller than -1/t for a sufficiently small $\varepsilon > 0$.

So $f_{\varepsilon}(x) \in e_{n,1}$ for a sufficiently small $\varepsilon > 0$ and $0 < f_{\varepsilon}(x) < f(x)$ for $-1 \leq x < 1$.

On the other hand $||f'||_{\infty} = |f'(-1)|$ and $||f'_{\varepsilon}||_{\infty} \ge |f'_{\varepsilon}(-1)| = ||f'(-1)| = ||f'||_{\infty}$.

It follows that

$$\frac{\|f_{\varepsilon}'\|_{\infty}}{\|f_{\varepsilon}\|_{p}} > \frac{\|f'\|_{\infty}}{\|f\|_{p}}$$

and from here the polynomial $f(x) = c(1+tx)(1-x)^{n-1}$ cannot be extremal for $t \in (-1, 0)$.

(b) Let now t = 0, so $f(x) = c(1 - x)^{n-1}$. Consider again

$$f_{\varepsilon}(x) := c(1-x)^{n-1} - \varepsilon p_{-1}(x) = (-1)^n \frac{\varepsilon(n-1)}{2^n} x^n + \sum_{k=0}^{n-1} c_k x^k.$$
(5)

Without any restriction let us assume *n* odd. The case *n* even can be treated by analogy. For a fixed $x_0 > 1$ we can choose ε sufficiently small ($\varepsilon > 0$) such that $f_{\varepsilon}(x_0) > 0$. From here and the representation (5) it follows $f_{\varepsilon}(x)$ has a real zero greater than 1 because $\lim_{x \to +\infty} f_{\varepsilon}(x) = -\infty$. So $f_{\varepsilon} \in e_{n,1}$ and $0 < f_{\varepsilon}(x) < f(x), -1 \le x < 1$. We end this case by the same arguments as in the case (a).

The cases (a) and (b) complete the proof of Lemma 6 when n = 2. Let $n \ge 3$.

(c) Let $n \ge 3$ and let $t \in (0, (n-2)/(n+2)]$. Consider f(x) = c(1+tx) $(1-x)^{n-1}, c > 0.$ The polynomial f'(x) has one local extremum at $x^*(t) = (2t - n + 2)/nt$. For $t \in (0, (n-2)/(n+2)]$, $x^*(t) \leq -1$. From here

$$\max_{x \in [-1, 1]} |f'(x)| = |f'(-1)|$$

and we can proceed as in the case (a).

It is geometrically evident that

$$\begin{aligned} f_{\varepsilon}(x) &:= f(x) - \frac{\varepsilon}{2^{n}} (1-x)^{n-1} \left[(n-1) x + n + 1 \right] \\ &= \left[ct - \frac{(n-1)}{2^{n}} \varepsilon \right] (-1)^{n-1} x^{n} + \sum_{k=0}^{n-1} c_{k} x^{k} \end{aligned}$$

will have one real zero less than -1 if ε is sufficiently small ($\varepsilon > 0$) such that $f_{\varepsilon}(-1) > 0$ and $(ct - ((n-1)/2^n) \varepsilon) > 0$.

Using that $f'_{\varepsilon}(-1) = f'(-1)$ we claim that

$$\|f'_{\varepsilon}\|_{\infty} \ge \|f'\|_{\infty}.$$

The inequality $0 < f_{\varepsilon}(x) < f(x)$, $-1 \le x < 1$ gives that $||f_{\varepsilon}||_{p} < ||f||_{p}$ and

$$\frac{\|f_{\varepsilon}'\|_{\infty}}{\|f_{\varepsilon}\|_{p}} > \frac{\|f'\|_{\infty}}{\|f\|_{p}}$$

The proof in the case (c) is completed.

(d) $t \in [(n-2)/(n+2), (n-2)/n]$. Consider $f(x) = c(1+tx)(1-x)^{n-1}, c > 0$.

The local extremum of f'(x), $x^*(t) = (2t - n + 2)/nt$ belongs to [-1, 1). In this case f'(x) is decreasing from -1 to $x^*(t)$ and increasing from $x^*(t)$ to 1; $f'(x) \leq 0$, $(-1 \leq x \leq 1)$, so we conclude

$$||f'||_{\infty} = |f'(x^{*}(t))|.$$

The polynomial

$$p_{x^*}(x) := \frac{(1-x)^{n-1}}{(1-x^*)^n} \left[(n-1) x + 1 - nx^* \right]$$

satisfies $p_{x^*}(x^*) = 1$, $p'_{x^*}(x^*) = 0$ and $p_{x^*}(x) \ge 0$ for $-1 \le x \le 1$.

By making use of $p_{x^*}(x)$ we form a variational polynomial

$$f_{\varepsilon}(x) = f(x) - \varepsilon p_{x^*}(x).$$

The same arguments as in (c) show that

$$\frac{\|f_{\varepsilon}'\|_{\infty}}{\|f_{\varepsilon}\|_{p}} > \frac{\|f'\|_{\infty}}{\|f\|_{p}}$$

and $f_{\varepsilon} \in e_{n,1}$ for ε sufficiently small ($\varepsilon > 0$).

Remark 6. Note that the above arguments are inapplicable when t = -1. This leads us to consider $c(1-x)^n$ as a candidate for an extremal, so let us denote $f_*(x) := (1-x)^n$.

Now we consider an auxiliary extremal problem

$$\sup_{f \in e_{n,1}} \frac{\|f'\|_{\infty}}{\|f\|_{p}} = \max\left(\sup_{t \in [(n-2)/n,1]} \frac{\|[c(1+tx)(1-x)^{n-1}]'\|_{\infty}}{\|c(1+tx)(1-x)^{n-1}\|_{p}}, \frac{\|f'_{*}\|_{\infty}}{\|f_{*}\|_{p}}\right)$$
$$= \max\left(\max_{t \in [(n-2)/n,1]} \frac{\|[(1+tx)(1-x)^{n-1}]'\|_{\infty}}{\|(1+tx)(1-x)^{n-1}\|_{p}}, \frac{\|f'_{*}\|_{\infty}}{\|f_{*}\|_{p}}\right).$$

Let $f_t(x) := (1 + tx)(1 - x)^{n-1}$ and $n \ge 3$ then

$$\|f'_t\|_{\infty} = \max(|f'_t(x^*(t))|, |f'_t(-1)) \\ = \max\left(\left(\frac{n-2}{n}\right)^{n-2} \frac{(1+t)^{n-1}}{t^{n-2}}, 2^{n-2} |(n-1)t - n + 1 + 2t|\right)$$

and from here we conclude

$$\sup_{f \in e_{n,1}} \frac{\|f'\|_{\infty}}{\|f\|_{p}} = \max\left(\max_{t \in [(n-2)/n,1]} \frac{|f'_{t}(x^{*}(t))|}{\|f_{t}\|_{p}}, \max_{t \in [(n-2)/n,1]} \frac{|f'_{t}(-1)|}{\|f_{t}\|_{p}}, \frac{\|f'_{*}\|_{\infty}}{\|f_{*}\|_{p}}\right).$$

From the method of the proof of Lemma 6 it easily follows that

$$\max_{t \in [(n-2)/n, 1]} \frac{|f'_t(-1)|}{\|f_t\|_p} \leq \max\left[\frac{|f'_1(-1)|}{\|f_1\|_p}, \frac{|f'_{-1}(-1)|}{\|f_{-1}\|_p}\right]$$
$$= \max\left[\frac{|f'_1(-1)|}{\|f_1\|_p}, \frac{\|f'_*\|_{\infty}}{\|f_*\|_p}\right],$$
$$0 \leq p \leq \infty.$$

(A) Now we consider for 0 the extremal problem

$$\max_{t \in [(n-2)/n, 1]} \frac{|f_t'(x^*(t))|}{\|f_t\|_p} = 2^{1/p} \left(\frac{n-2}{n}\right)^{n-2} \left[\max_{t \in [(n-2)/n, 1]} \frac{(1+t)^{(n-1)p}}{t^{(n-2)p}} \times \frac{1}{\int_{-1}^{1} (1-x)^{(n-1)p} (1+tx)^p dx}\right]^{1/p}$$

which is equivalent to the auxiliary extremal problem

$$\min_{t \in [(n-2)/n, 1]} \frac{\int_{-1}^{1} (1-x)^{(n-1)p} (1+tx)^p \, dx}{(1+t)^{(n-1)p}} t^{(n-2)p}.$$
 (6)

In the above considerations we need the restriction $n \ge 3$. The case n = 2 will be studied in the next remark.

Remark 7. The case n=2 of the extremal problem (1). Lemma 6 shows that we have to consider only the case when the second zero of our polynomial of degree 2 is less than -1. In this case we have

$$||f'||_{\infty} = |f'(1)|$$

and

$$f_{\varepsilon}(x) = f(x) - \varepsilon(x-1)^2$$

for sufficiently small ε ($\varepsilon > 0$) shows that f cannot be extremal for $t \in (0, 1)$. So, we obtain that the only candidates for extremals in the case n = 2 are $c(1-x)^2$, $c(1+x)^2$, c(1-x)(1+x).

Now we continue with the auxiliary problem (6), $n \ge 3$. Denote

$$\begin{split} \varPhi_p(t) &:= \frac{\int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^p \, dx \, t^{(n-2)p}}{(1+t)^{(n-1)p}} \\ D_1(t) &:= \int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^{p-1} \, x \, dx \\ D(t) &:= \int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^p \, dx \\ D_0(t) &:= \int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^{p-1} \, dx. \end{split}$$

Our problem is

$$\min_{t \in [(n-2)/n, 1]} \Phi_p(t).$$

For the first derivative of $\Phi_p(t)$ we obtain

$$\frac{1}{p} \frac{\Phi_p'(t)}{\Phi_p(t)} = \frac{\int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^{p-1} x \, dx}{\int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^p \, dx} + \frac{n-2-t}{t(1+t)}$$

and

$$\Phi'_p(t) = 0$$
 is equivalent to $\frac{D_1(t)}{D(t)} = \frac{t-n+2}{t(1+t)}$.

The case p = 1 is trivial. We have

$$\frac{\varPhi_1'(t)}{\varPhi_1(t)} = \frac{-t(n^2 - n + 2) + n^2 - n - 2}{t(1+t)(n+1 - t(n-1))}$$

and

$$\begin{split} \min_{t \in [(n-2)/n, 1]} \varPhi_1(t) &= \min\left(\varPhi_1\left(\frac{n-2}{n}\right), \varPhi_1(1)\right) \\ \varPhi_1(1) &= \frac{4}{n(n+1)}; \\ \varPhi_1\left(\frac{n-2}{n}\right) &= \frac{(n-2)^{n-2}}{(n-1)^{n-1}} (2n-1) \frac{4}{n(n+1)}. \end{split}$$

For n = 3 and n = 4 we have $\min(\Phi_1((n-2)/n), \Phi_1(1)) = \Phi_1(1)$. On the other hand

$$\frac{(n-2)^{n-2}}{(n-1)^{n-1}}(2n-1) = \left(1 - \frac{1}{n-1}\right)^{n-2} \left(2 + \frac{1}{n-1}\right) \xrightarrow[n \to \infty]{} \frac{2}{e} < 1.$$

So for *n* sufficiently big we have

$$\min\left(\varPhi_1\left(\frac{n-2}{n}\right),\varPhi_1(1)\right) = \varPhi_1\left(\frac{n-2}{n}\right).$$

Let us now consider the case $p \in (0, +\infty)$, $p \neq 1$. We have

$$\begin{split} sgn(\varPhi'_p(1)) &= sgn\left[1 - \frac{\Gamma[(n-1)p+1] \Gamma(p) 2^{(n-1)p+p} \Gamma(np+2)}{\left[\begin{array}{c} \Gamma[(n-1)p+p+1] 2^{np+1} \\ \times \Gamma[(n-1)p+1] \Gamma(p+1) \end{array} \right] \right] \\ &= sgn\left[\begin{array}{c} -\frac{1}{2} - \frac{1}{2p} \end{array} \right] < 0. \end{split}$$

It follows that $\Phi'_p(t) < 0$ in $(1 - \delta, 1)$ and $\Phi_p(t)$ is strictly decreasing in $(1 - \delta, 1)$.

Now we will study

$$sgn\left\{\Phi_p''(t):t\in\left(\frac{n-2}{n},1\right),\,\Phi_p'(t)=0\right\}.$$

We have

$$\begin{split} \frac{1}{p} \; \frac{\Phi_p'(t)}{\Phi_p(t)} &= \frac{D_1(t)}{D(t)} - \frac{t - n + 2}{t(1 + t)} \\ \frac{1}{p} \left[\frac{\Phi_p''(t)}{\Phi_p(t)} - \left(\frac{\Phi_p'(t)}{\Phi_p(t)} \right)^2 \right] &= \frac{D_1'(t)}{D(t)} - \frac{D_1(t) \; D'(t)}{\left[D(t) \right]^2} + \frac{t^2 - 2(n - 2) \; t - n + 2}{t^2(1 + t)^2} \\ D'(t) &= p \int_{-1}^1 (1 - x)^{(n - 1) p} (1 + tx)^{p - 1} \; x \; dx = p D_1(t) \\ \frac{D_0(t) + t D_1(t)}{D(t)} &= 1, \quad \text{and} \quad \frac{D_0(t)}{D(t)} = \frac{n - 1}{1 + t}. \end{split}$$

It follows that

$$sgn\left\{ \Phi_{p}^{\prime\prime}(t) : t \in \left(\frac{n-2}{n}, 1\right), \Phi_{p}^{\prime}(t) = 0 \right\}$$
$$= sgn\left\{ \frac{D_{1}^{\prime}(t)}{D(t)} - \frac{D_{1}(t)D^{\prime}(t)}{[D(t)]^{2}} + \frac{t^{2} - 2(n-2)t - n + 2}{t^{2}(1+t)^{2}} \right\}.$$
$$D_{1}^{\prime}(t) = (p-1)\int_{-1}^{1} (1-x)^{(n-1)p} (1+tx)^{p-2} x^{2} dx.$$
(7)

The polynomial x^2 can be represented by using Lagrange interpolation at -1, +1, $-1/t \neq -1$, 1.

$$x^{2} = \frac{1}{2(1-t)} \left(1-x\right)(1+tx) + \frac{1}{2(1+t)} \left(1+x\right)(1+tx) - \frac{1}{1-t^{2}} \left(1-x^{2}\right)$$

Replacing x^2 with the right-hand side of the above formula in (7) we obtain

$$\begin{split} D_1'(t) &= \frac{p-1}{2(1-t)} \int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^{p-1} (1-x) \, dx \\ &+ \frac{p-1}{2(1+t)} \int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^{p-1} (1+x) \, dx \\ &+ \frac{p-1}{1-t^2} \int_{-1}^1 (1-x)^{(n-1)p} (1+tx)^{p-2} (1-x^2) \, dx \\ &= \frac{p-1}{2(1-t)} \left[D_0(t) - D_1(t) \right] + \frac{p-1}{2(1+t)} \left[D_0(t) + D_1(t) \right] + R(t) \end{split}$$

where after integrating by parts we get

$$R(t) = \frac{1}{t(1-t^2)} \left[-(n-1) p D_0(t) - (2+(n-1) p) D_1(t) \right].$$

The above formulas give the representation

$$\begin{split} \frac{D_1'(t)}{D(t)} &= \frac{(n-1)(p-1)\ t^2 - (n-1)^2\ pt - (p-1)\ t^3}{t^2(1+t)^2\ (1-t)} \\ &+ \frac{\left[\frac{(n-2)(p-1)\ t^2 - (2+(n-1)\ p)\ t}{+(n-2)(2+(n-1)\ p)}\right]}{t^2(1+t)^2\ (1-t)} \\ \frac{D_1(t)}{D(t)} &= \frac{t-n+2}{t(1+t)}, \quad \frac{D_0(t)}{D(t)} = \frac{n-1}{1+t}, \quad \frac{D'(t)}{D(t)} = p\ \frac{D_1(t)}{D(t)}. \end{split}$$

Finally we obtain

$$sgn\left\{ \Phi_{p}''(t) : t \in \left(\frac{n-2}{n}, 1\right), \Phi_{p}'(t) = 0 \right\}$$
$$= sgn\left\{ (p+1)(-tn+n-2) : t \in \left(\frac{n-2}{n}, 1\right) \right\} < 0.$$

The above sign inequality shows that $\Phi_p(t)$ may have only one local extremum in [(n-2)/n, 1] and it must be a local maximum.

We make an important for the solution of The problem (1) conclusion that

$$\min_{t \in [(n-2)/n, 1]} \Phi_p(t) = \min\left[\Phi_p\left(\frac{n-2}{n}\right), \Phi_p(1)\right].$$
(8)

Now, we sum up on the basis of the Eq. (8), that was obtained by studying the extremal problem (6) we claim that

$$\sup_{f \in e_{n,1}} \frac{\|f'\|_{\infty}}{\|f\|_{p}} = \max\left(\frac{\left|f'_{(n-2)/n}\left(x^{*}\left(\frac{n-2}{n}\right)\right)\right|}{\|f_{(n-2)/n}\|_{p}}, \frac{\|f'_{1}(-1)\|}{\|f_{1}\|_{p}}, \frac{\|f'_{*}\|_{\infty}}{\|f_{*}\|_{p}}\right), \\ 0
(9)$$

observing that $|f'_1(-1)| > |f'_1(x^*(1))| = |f'_1(4-n)/n|$.

(B) The case p = 0. In this case our extremal problem (6) looks as follows

$$\min_{t \in [0,1]} \Phi_0(t) = \min_{t \in [0,1]} \frac{t^{n-2}}{(1+t)^{n-1}} \exp\left(\frac{1}{2} \int_{-1}^1 \ln[(1-x)^{n-1}(1+tx)] dx\right)$$

and

$$t^{2} \frac{\varPhi_{0}'(t)}{\varPhi_{0}(t)} = \frac{(n-1)t}{1+t} - \frac{1}{2}\ln(1+t) + \frac{1}{2}\ln(1-t), \qquad t \in [0,1]$$

Hence, there is $x_0 \in ((n-2)/n, 1)$ such that

$$\Phi_0'(t) \begin{cases} <0, & t \in (x_0, 1) \\ >0, & t \in \left[\frac{n-2}{n}, x_0\right]. \end{cases}$$

From here

$$\min_{t \in [(n-2)/n, 1]} \Phi_0(t) = \min\left[\Phi_0\left(\frac{n-2}{n}\right), \Phi_0(1)\right]$$

and this completes our consideration in the case p = 0.

Taking into account that $f_1(x) = (1+x)(1-x)^{n-1}$ is a solution of the extremal problem (3) and on the basis of (9) we claim that

$$\sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} = \max\left(\frac{\|f_1'(-1)\|}{\|f_1\|_p}, \frac{\|f'_*\|_{\infty}}{\|f_*\|_p}\right), \qquad 0 \le p < \infty$$
(10)

observing that $f_{(n-2)/n}(x)$ cannot be extremal (see Lemma 6) for the extremal problem (1).

In the next lemma we will compare the values of

$$\frac{\|f'_1(-1)\|}{\|f_1\|_p} \quad \text{and} \quad \frac{\|f'_*\|_{\infty}}{\|f_*\|_p} = \frac{\|f'_{-1}(-1)\|}{\|f_{-1}\|_p}$$

when p varies from 0 to ∞ .

LEMMA 7. The following inequalities hold

(a)
$$\frac{|f'_{1}(-1)|}{\|f_{1}\|_{p}} < \frac{\|f'_{*}\|_{\infty}}{\|f_{*}\|_{p}}, \qquad 0 \le p < 1;$$

(b)
$$\frac{\|f'_{*}\|_{\infty}}{\|f_{*}\|_{p}} < \frac{|f'_{1}(-1)|}{\|f_{1}\|_{p}}, \qquad p > 1;$$

(c)
$$\frac{\|f'_{*}\|_{\infty}}{\|f_{*}\|_{1}} = \frac{|f'_{1}(-1)|}{\|f_{1}\|_{1}}, \qquad p = 1.$$

Proof. If p = 0, then

$$\frac{\|f_1'(-1)\|}{\|f_1\|_0} = \frac{2^{n-1}}{\exp\left(\frac{1}{2}\int_{-1}^1 n\ln(1-x)\,dx\right)} < \frac{n2^{n-1}}{\exp\left(\frac{1}{2}\int_{-1}^1 n\ln(1-x)\,dx\right)} = \frac{n}{2}e^n = \frac{\|f_*'\|_{\infty}}{\|f_*\|_0}.$$

If 0 , then

$$\frac{|f_1'(-1)|}{\|f_1\|_p} = \frac{1}{2} \left(\frac{\Gamma(pn+2)}{\Gamma(pn-p+1) \ \Gamma(p+1)} \right)^{1/p}$$

and

$$\frac{\|f'_*\|_{\infty}}{\|f_*\|_p} = \frac{1}{2}n(np+1)^{1/p}.$$

In the case n = 1 the statement of the lemma is trivial.

Let $n \ge 2$. first we show that for the derivative of

$$\phi_p(v) = \frac{\Gamma(vp+1)}{v^p \Gamma[(v-1)p+1]}; \qquad v \in R, \quad v \ge 2, \quad 0$$

we have the formula

$$\begin{split} \frac{1}{p} \; \frac{\phi_p'(v)}{\phi_p(v)} &= \sum_{s=0}^{\infty} \left(\frac{1}{(v-1)p+1+s} - \frac{1}{vp+1+s} \right) - \frac{1}{v} \\ &= \left(\sum_{s=0}^{\infty} \left(\frac{1}{(v-1)p+1+s} - \frac{1}{vp+1+s} \right) - \frac{1}{vp} \right) + \frac{1}{vp} - \frac{p}{vp} \,. \end{split}$$

Consider the finite sum

$$\sum_{s=0}^{N} \left(\frac{1}{(v-1)p+1+s} - \frac{1}{vp+1+s} \right) - \frac{1}{vp}$$
$$= \sum_{s=0}^{N} \left(\frac{1}{vp+1-p+s} - \frac{1}{vp+s} \right) - \frac{1}{vp+N+1}.$$

Taking the limit when $N \to \infty$ we obtain that the both series have the same sum. Hence

$$\begin{split} \frac{1}{p} \; \frac{\phi_p'(v)}{\phi_p(v)} &= \sum_{s=0}^{\infty} \left(\frac{1}{vp+1-p+s} - \frac{1}{vp+s} \right) + \frac{1-p}{vp} \\ &= \sum_{s=0}^{\infty} - \frac{1-p}{(vp+1-p+s)(vp+s)} + \frac{1-p}{vp} \,. \end{split}$$

(a) Let 0 . We have

$$-\frac{1-p}{(vp+1-p+s)(vp+s)} < -\frac{1-p}{(vp+1+s)(vp+s)}$$
$$= (p-1)\left(\frac{1}{vp+s} - \frac{1}{vp+1+s}\right).$$

The above formula gives that

$$\sum_{s=0}^{\infty} \frac{p-1}{(vp+1-p+s)(vp+s)} < (p-1) \sum_{s=0}^{\infty} \left(\frac{1}{vp+s} - \frac{1}{vp+1+s}\right) = \frac{p-1}{vp}$$

•

Hence

$$\frac{1\phi_p'(v)}{p\phi_p(v)} < -\frac{1-p}{vp} + \frac{1-p}{vp} = 0$$

and

$$\phi_p(v) < \phi_p(1) = \Gamma(p+1).$$

(b) Let p > 1. We have

$$-\frac{1-p}{(vp+1-p+s)(vp+s)} > -\frac{1-p}{(vp+1+s)(vp+s)}$$
$$= (p-1)\left(\frac{1}{vp+s} - \frac{1}{vp+1+s}\right).$$

and from here

$$\sum_{s=0}^{\infty} \frac{p-1}{(vp+1-p+s)(vp+s)} > (p-1) \sum_{s=o}^{\infty} \left(\frac{1}{vp+s} - \frac{1}{vp+1+s}\right) = \frac{p-1}{vp}$$

Hence

$$\frac{1}{p} \frac{\phi'_p(v)}{\phi_p(v)} > -\frac{1-p}{vp} + \frac{1-p}{vp} = 0$$

and

$$\phi_p(v) > \phi_p(1) = \Gamma(p+1).$$

The following representation ends the proof of the lemma

$$\left(\frac{\|f_1'(-1)\|}{\|f_1\|_p}\right) \left(\frac{\|f_*'\|_{\infty}}{\|f_*\|_p}\right)^{-1} = \left(\frac{\phi_p(n)}{\Gamma(p+1)}\right)^{1/p}$$

Note, that

$$\frac{\|f'_*\|_{\infty}}{\|f_*\|_0} = \frac{n}{2}e^n; \qquad \frac{\|f'_*\|_{\infty}}{\|f_*\|_p} = \frac{|f'_*(-1)|}{\|f_*\|_p} = \frac{1}{2}n(np+1)^{1/p}.$$

On the basis of (10) and Lemma 7 we obtain the solution of the problem (1) that is contained in the next theorem.

3. THE SOLUTION OF THE PROBLEM (1)

Summing up we have proved the following theorem.

THEOREM 1. If $f \in \mathcal{P}_n$, then

$$\frac{\|f'_*\|_{\infty}}{\|f_*\|_0} = \frac{n}{2} e^n, \qquad p = 0;$$

$$\sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} = \begin{cases} \frac{\|f'_*\|_{\infty}}{\|f_*\|_p} = \frac{1}{2}n(np+1)^{1/p}, & 0$$

$$\frac{\|g_{*}\|_{1}}{\|f_{*}\|_{1}} = \frac{\|g_{*}\|_{1}}{\|f_{1}\|_{1}} = \frac{1}{2}, \qquad p = 1;$$

$$\frac{\|f_{1}'\|_{\infty}}{\|f_{1}\|_{p}} = \frac{1}{2} \left(\frac{\Gamma(pn+2)}{\Gamma(pn-p+1)\,\Gamma(p+1)}\right)^{1/p}, \qquad p \ge 1.$$

In the case $0 \le p < 1$ the only extremal polynomials are $c(1-x)^n$ and $c(1+x)^n$, $c \in \mathbf{R}$, $c \neq 0$.

In the case p = 1 the only extremal polynomials are $c(1-x)^n$, $c(1+x)^n$, $c(1-x)(1+x)^{n-1}$, and $c(1+x)(1-x)^{n-1}$, $c \in \mathbf{R}$, $c \neq 0$.

In the case p > 1 the only extremal polynomials are $c(1-x)(1+x)^{n-1}$ and $c(1+x)(1-x)^{n-1}$, $c \in \mathbf{R}$, $c \neq 0$.

By using Stirling's formula, Theorem 1 gives the exact asymptotic of $||f'||_{\infty}/||f||_p$, $f \in \mathcal{P}_n$.

COROLLARY 1. If $f \in \mathcal{P}_n$, then

$$\sup_{f \in \mathscr{P}_n} \frac{\|f'\|_{\infty}}{\|f\|_p} = \mathbf{O}(n^{1+1/p}), \qquad n \mapsto \infty, \quad 0$$

(one may compare with Theorem A).

Remark 8. If $f \in \mathcal{P}_n$ and f > 0 on (-1, 1), then $f \in \pi_n$. In other words

$$f(x) = \sum_{k=0}^{n} A_k (1+x)^k (1-x)^{n-k}, \qquad A_k \ge 0, \quad k = 0, 1, ..., n.$$
(11)

This fact is proved in [12] but it is really contained in an earlier result of Meissner [9]. On the basis of (11) and by using the Fundamental theorem of Linear Programming the exact value n(n+1)/2 of $\sup\{||f'||_{\infty}/||f||_1, f \in \mathcal{P}_n\}$ is given in [11]. Note, that taking a limit in Theorem 1, when $p \mapsto \infty$ we obtain

 $\sup\{\|f'\|_{\infty}/\|f\|_{\infty}, f \in \mathcal{P}_n\} = \|f'_1\|_{\infty}/\|f_1\|_{\infty}$

$$= \left[(1/2) \left(1 - \frac{1}{n} \right)^{-n+1} \right] n$$
$$< n \lim_{n \to \infty} \left[(1/2) \left(1 - \frac{1}{n} \right)^{-n+1} \right] = \frac{e}{2} n.$$

REFERENCES

- M. Arsenault and Q. I. Rahman, On two polynomial inequalities of Erdős related to those of the brothers Markov, J. Approx. Theory 84 (1996), 197–235.
- P. Borwein, Markov's inequality for polynomials with real zeros, *Proc. Amer. Math. Soc.* 93 (1985), 43–47.
- S. Bernstein, Sur l'ordre de la meilleure approximation des fonctions continues par des polynômes de degré donné, Mém. Acad. Roy. Belgique (2) 4 (1912), 1–103.
- S. Bernstein, Sur la représentation des polynômes positifs, Comm. Soc. Math. Kharkow (2) 14 (1915), 227–228.
- D. P. Dryanov and Q. I. Rahman, On certain mean values of polynomials on the unit interval, J. Approx. Theory 101 (1999), 92–120, doi:10.1006/jath.1999.3364.
- T. Erdélyi, Bernstein-type inequalities for the derivatives of constrained polynomials, *Proc. Amer. Math. Soc.* 112 (1991), 829–838.
- 7. P. Erdős, On extremal properties of polynomials, Ann. of Math. (2) 41 (1940), 310-313.
- 8. A. A. Markov, On a problem of D. I. Mendeleev, Zap. Akad. Nauk St. Petersburg 62 (1889), 1–24. [In Russian]
- 9. E. Meissner, Über positive darstellungen von polynomen, Math. Ann. 70 (1911), 223-235.
- 10. D. J. Newman, Derivative bounds for Münz polynomials, J. Appox. Theory 18 (1976), 360–362.
- M. A. Qazi and Q. I. Rahman, The fundamental theorem of linear programming applied to certain extremal problems for polynomials, *Ann. Numer. Math.* 4 (1997), 529–546.
- J. T. Scheick, Inequalities for derivatives of polynomials of special type, J. Approx. Theory 6 (1972), 354–358.